
Calculation of the gravitational constant G

The Law of Gravity states that all masses attract each other, that this force is proportional 

to the product of the masses, and indirectly proportional to the square of the distance 

between the masses. The gravitational constant makes an equation out of this relationship;

it is one of the important universal constants of nature. In order to determine the constant, 

which was also named after Newton, exclusively mechanical methods were used in the 

past, which are subject to many disturbance variables, which is why G has hitherto been 

regarded as a constant with great inaccuracy.

By comparison, the uncertainty of a calculation is only due to the accuracy of the natural 

constants used. In the past, there were several fruitless attempts to compute G [1]. In the 

following, the author shows on the basis of the theory created in [2], [3]. Fundamentals a 

new possibility for the mathematical determination of the gravitational constant.

Calculations bring a reduction of the uncertainty of G by several orders of magnitude 

comes within reach. First of all, the determination by means of two opposing electrons at a 

distance r appears obvious. Analogous to Coulomb's law, in which charges with different 

signs attract each other, gravitation can be understood as an attraction of opposite poles, 

whereby Coulomb force Fc and gravitational force Fq differ greatly in magnitude:
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The quotient
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is also called Eddington's number and even for Feynman the balance of 

forces between two interacting electrons had great significance. The quotient
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can be 



replaced by the term N 2
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, wherein N is referred to as a large number [2]. First of all, it is

assumed that the G=6.67259(85)×10–11 [
m3/kg
s2

] , recognized by the International Codata

Committee in 1986, [4].
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The result indicates that the Large Number N is a large number of about 1×1022 . In 

1986, data such as G=6.672605×10−11 was typical, with the N=1×1022 large number 

being assumed without further explanation [3]. The relationship between mass and natural 

constants is defined by the following relationship, Planck mass corresponding to M o

without π
2

Planck s intention of 1900. Z0 is the characteristic impedance of the vacuum 

[3].
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These Eqs. connects to other constants of nature, and its extension offers the possibility of 

determining G0 as the basis for baseline data to determine the large number N0 . In the

following, the letter b is used for the fine structure constant α .
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The index 0 at G0 refers to the value for further calculations. After transformation of Eq. 

(1), one obtains
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And by substitution of e2=4 π e0 c
2mere , the absolute minimum variant of an equation for 

calculating G arises from this:
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By equating equation (3) with equation (2), N can be obtained:
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The index at N 0 indicates the basis for further calculations. The rel. Uncertainty of N 0
2 is 

due to the uncertainties of the constants involved with re±6.8×10
−10 , h±1.2×10−8 and



me±1.2×10
−8 , the sum of which is ±2.5×10−8 . Codata published the following binding

values for G during the period from 1986 to 2014:

Table I

Codata value Uncertainty Date

G1=6.67259×10
−11 ±1.3×10−4 1986

G2=6.67300×10
−11 ±1.5×10−3 1998

G3=6.67420×10
−11 ±1.5×10−4 2002

G4=6.67428×10
−11 ±1.0×10−4 2006

G5=6.67384×10
−11 ±1.2×10−4 2010

G6=6.67408×10
−11 ±4.7×10−5 2014

The data show that G reached a maximum in 2006, which flattened again in the following

years. The idea was born to relate this decreasing trend to the electron mass me , which, 

according to the transformed equation (3), results in G , so me=24
c2 re
GN2

. These values 

were referenced to the values G0 and N0 given in Eq. (2) and Eq. (4) for a precise 

evaluation. This results in the following deviations for the individual annual values:
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G0=6.6724604×10
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From these deviations related to the electron mass, it was deduced that the G increase 

indicated by Codata is also due to a me decrease given by Eq. (3). It was difficult to find 

the only cause in question. Between 1986 and 2014, the masses reported by Codata for me

were negligibly reduced by
dme
me

=−6.74×10−7 . So it could only be a cardinal error in 

determining G around 1986, which will be eliminated over the years. The first indications 

came from the influence of the co-movement of the proton in the hydrogen atom, which is

much discussed in specialist literature.



A finite heavy nucleus moves under the influence of the mass of the electron around the 

common center of gravity, resulting in the Rydberg constant Ry correction of the

Ry .real=
R y

1+
me
mH

=−5.4×10−4 form. At the same time the mass of the electron increases by 

its relativist. Orbital velocity v
c
=3.6×10−3 , which shows the influence of other variables 

that are incomplete to be detected [5].

The reduction of the Rydberg constant from Ry to Ryr also applies to the mass of the 

electron, as well as
me .real
me

=
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=−5.4×10−4 . To determine the effective Rydberg 

constant R yr , the hydrogen transition frequency mentioned by Codata in [6] is used:
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The Rydberg constant Ry is considered to be the most accurate natural constant of all. 

The dimensionless quotient Q between it and the real effective Rydberg constant is the 

linchpin of the calculation

Q=√
R yr
R y

=0.9997324625913± 3.0×10−12 (5)



The difference Q=√
R yr
R y

−1=−2.675374×10−4 corresponds to the me - related deviation

shown in Table II. The comparison shows that the quotient can be used to overcome the 

problems mentioned in reproducing correct ratios for the H atom and also in determining

G according to equation (3). On this basis, the gravitational constant can be calculated 

using equations (3), (4), (5).
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Now it is investigated which deviations have reliable data for G from the literature 

compared to the calculated value Gneu . To this end, in Table III only credible values are 

used for comparison, even if they are sometimes several years ago:

Table III

Nominal value Uncertainty Ancestry Year Source

Ga=6.67425×10
−11 ±1.26×10−5 G World 1997 [7]

Gb=6.674215×10
−11 ±1.38×10−5 Uni Washington 2000 [7], [4]

Gc=6.67435×10
−11 ±1.9×10−5 UCI-14 Input 2014 [6]

Gd=6.67408×10
−11 ±4.7×10−5 Codata values 2014 [6]

As the following Table IV shows, all deviations of these values from the calculated value

Gneu=6.67424604×10
−11 are within the uncertainty stated by the authors. The ratio of 

calculated deviation to uncertainty is less than one standard deviation.



Table IV

Quotient Deviation Dev./Uncertainty
Ga
Gneu

−1 +5.922×10−7 0.047

Gb
Gneu

−1 −4.651×10−6 0.337

Gc
Gneu

−1 +1.557×10−5 0.797

Gd
Gneu

−1 −2.487×10−5 0.529

A comparison of the results of the state-of-the-art data according to [7], Table 7.5 with

Gneu , shows that all tolerances specified therein are observed. It is different with regard 

to G given by Codata in [6] Table XV, where of the 14 references only the following 5 

have the error tolerances assigned to them:

Bagley and Luther (1997) LANL-97 6.67398×10−11

G neu

−1=−3.98×10−5

Gundlach and Merkowitz (2000, 2002) 6.674255×10−11

G neu

−1=+1.34×10−6

Kleinvoß, Kleinvoß et al. (2002) 6.67422×10−11

Gneu

−1=−3.90×10−6

Schlamminger et al. (2006) UZur-06 6.67425×10−11

Gneu

−1=+5.92×10−7

Newman et al. (2014) UCI-14 6.67435×10−11

Gneu

−1=+1.55×10−5

Table XV shows that values given by Codata to G are partly subject to large variations. 

This becomes clear when using the mean of the 14 contained values with

G=6.673671×10−11 instead of Gneu , where only 4 out of 14 values are in the specified 

tolerance range.

For the practical calculation of G , it makes sense to combine the results given in 

equation (4) and equation (5) into a constant K .

K=(1.000010863884×1022)2×0.9997324625913

K=N 0
2Q=9.997541846643×1043±2.5×10−8 (7)



From the abs. Minimal variant Eq. (3) allows further equations to be deduced by replacing 

the electron radius re once by the Relationship re=b
Lc
2π

and the other by the relation

re=
b3

4 π Ry
:
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The uncertainty in the calculation of G is mainly determined by N 0
2 according to 

equation (4) or the constant K ±2.5×10−8 according to equation (7). In addition, the 

uncertainty of the electron mass me± 1.2×10
−8 is given in equation (3). The inaccuracy of 

the constants still involved can be neglected. ( b± 2.3×10−10 , Lc± 4.5×10
−10 ,

re±6.8×10
−10 ). The uncertainty of the electron mass me thus determines the total error 

of the G calculation.

The actual cause of the inaccuracy of me is the underlying Avogadro constant with

N A±1.2×10
−8 , which limits a further increase in the accuracy of G . In principle, the 

accuracy of G is limited to 3 times the N A uncertainty. Due to SI efforts, approximation 

to N A=6.022140758×10
23±1.0×10−8[

1
mol

] is planned [8], which indicates future accuracy 

limits of G .

THE G-FIELD IS ENERGY! Consequently, there is no "empty" space. EVEN THE ELECTRON 

DELIVERS HIS CONTRIBUTION ..... (M. Geilhaupt)



The calculations are based on the following constants:

b=7.297352568653×10−3[α ]

c=2.99792458×108[
m
s

]

h=6.626070153139×10−34[J×s]

Lc=2.426310238167×10
−12

[m ]

me=9.109383707749×10
−31

[kg]

N A=6.022140758×10
23
[
1
mol

]

re=2.817940325365×10
−15

[m ]

R y=1.097373156852×10
7
[
1
m

]
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